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A B S T R A C T

With the shift towards Industry 4.0  (I4.0) and the Internet of Things   (IoT), ensuring
guarantees is becoming more challenging as we transition towards software defined
architecture. Industrial and IoT applications are safety and time critical in nature, in
addition to exchanging large amounts of data they are required to make time constrained
decisions. Limited bandwidth and/or untimely responses in the networks deployed
in such fields may lead to undesired or even catastrophic outcomes. State-of-the-art
networking technologies, e.g. Time-sensitive Networking  (TSN), Fifth Network Generation 
 (5G) and Cyber Physical System   (CPS), aim towards meeting the requirements
of the next generation industry as deterministic and critical machine-to-machine com-
munications while ensuring advanced cybersecurity. However, the traditional network
monitoring solutions aren’t suitable for evaluating the new network technologies target-
ing real-time communications. We survey the state-of-the-art, review present network
monitoring and benchmarking solutions, and identify open problems of monitoring
real-time networks. We propose a benchmarking and monitoring system that uses the
extended Berkeley Packet Filter    (eBPF) technology to achieve real-time network moni-
toring. The proposed proof of concept implementation is analysed and the contributions
are evaluated in a testbed. We found that utilizing eBPF in network monitoring systems
improves performance and reduces resources overhead.



Z U S A M M E N F A S S U N G

Mit dem Wandel zu Industrie 4.0 (I4.0) und dem Internet der Dinge (IoT) wird es immer
schwieriger, Garantien zu gewährleisten, da wir zu einer softwaredefinierten Architektur
übergehen. Industrielle und IoT-Anwendungen sind sicherheits- und zeitkritisch und
müssen nicht nur große Datenmengen austauschen, sondern auch zeitlich begrenzte
Entscheidungen treffen. Begrenzte Bandbreite und/oder unzeitgemäße Reaktionen in
den Netzwerken, die in solchen Bereichen eingesetzt werden, können zu unerwün-
schten oder sogar katastrophalen Resultaten führen. Modernste Netzwerktechnologien,
z. B. TSN, die fünfte Generation Netzwerken (5G) und Cyber-Physische Systeme
(CPS), zielen darauf ab, die Anforderungen der Industrie der nächsten Generation
an eine deterministische und kritische Maschine-zu-Maschine-Kommunikation zu er-
füllen und gleichzeitig fortschrittliche Cybersicherheit zu gewährleisten. Die herkömm-
lichen Netzwerküberwachungslösungen sind jedoch nicht für die Bewertung der neuen
Netzwerktechnologien geeignet, die auf Echtzeitkommunikation abzielen. Wir geben
einen Überblick über den aktuellen Stand der Technik, überprüfen die derzeitigen
Netzwerküberwachungs- und Benchmarking-Lösungen und identifizieren offene Prob-
leme bei der Überwachung von Echtzeitnetzwerken. Wir entwerfen ein Benchmarking-
und Überwachungssystem, das die erweiterte Berkeley Packet Filter (eBPF)-Technologie
nutzt, um eine Netzwerküberwachung in Echtzeit zu erreichen. Die entworfene Proof-of-
Concept-Implementierung wird analysiert und die Beiträge werden in einem Testbed be-
wertet. Wir haben festgestellt, dass der Einsatz von eBPF in Netzwerküberwachungssys-
temen die Leistung verbessert und den Ressourcenverbrauch reduziert.
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1.1 Background and Motivation

Connectivity has become a pivotal driver towards digitalization and automation in
industrial environments. The evolution of the Internet of Things   (IoT) and Cloud services

has facilitated the rise of the fourth industrial generation, Industry 4.0  (I4.0), as a new
trend of automation and data exchange in the manufacturing industry. This new industrial
paradigm is characterised by its ability to reconfigure and often optimize autonomously.

The fourth industrial revolution I4.0 aims at transforming today’s factories into
intelligently connected production information systems that operate well beyond the

physical boundaries of the factory premises. Factories of the future leverage the smart
integration of Cyber Physical System   (CPS) and IoT solutions in industrial processes[p1],
moving the industry to next technology while ensuring cyber security. The Fifth Network Generation
 (5G) networks will play a key role in enabling this integration, offering
programmable technology platforms able to connect a wide variety of devices in an

ubiquitous manner. The 5G network infrastructure provides highly secure, reliable and
resilient cellular connectivity, which is crucial for mission-critical applications.

With the increase in the amount of data captured during the manufacturing process,
monitoring systems are becoming important factors in decision making for management.

Robust determinism and real-time (RT) performance are mandatory for process

control and manufacturing systems in modern industrial automation. Many modern
information systems are becoming safety-critical in a general sense because loss of life
and property can result from their failure.[p2]. The number of computer systems that
fall under the safety-critical category is increasing dramatically as computer systems
continue to be introduced into many areas that affect our lives.
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Moreover, there are significant safety assurance challenges that are posed by the
reconfigurable and modular nature of smart factories, which need to quickly adapt to
production line changes and minimize downtime due to factory modifications. This
could weaken the confidence in the safety of the factory and result in a reduction of the
overall safety case.

Overall, there is a growing necessity in providing and assuring a deterministic
real-time exchange of information to guarantee safe operations.

1.2 Problem statement

Network monitoring guides network operators in understanding the current behavior
of a network. Therefore, accurate and efficient monitoring, e.g. collecting up-to-date

information about the traffic load, performance parameters or potential problems is vital
to ensure that the network operates according to the intended behavior as well as to
troubleshoot any deviations. However, monitoring network can generate a large amount
of data and consume network resources, especially in large and dense networks.

The amount of data generated by the network monitoring system grows with the

size of the monitored network and the number of metrics collected. This issue becomes
challenging in real-time networks, where network bandwidth and CPU utilization are
critical resources. A significant proportion of the resource consumption of monitoring
systems is related to switching between user and kernel space. More detailed explanation
will follow in 2. Moreover, monitoring real-time networks deployed in mission-critical

fields requires collecting more accurate measurements than conventional network setups.
The traditional network monitoring systems deliver relative results that are sufficient to
the regular user. However, these tools might not be suitable for I4.0 applications because
they arent’t built to meet industrial real-time network requirements.

To tackle these issues there have been many approaches such as utilizing machine

learning models in delay prediction [p3]. Another approach proposes a monitoring
model based on a subset of nodes in the network and therefore reduce the amounts on
collected and processed data [p4]. These approaches do reduce the network overload and
provide faster network response in some sense. However, they do not deliver absolute
knowledge about the whole network topology due to the performance optimization

trade-offs and therefore providing less reliable results.
In this thesis, we study utilizing the extended Berkeley Packet Filter    (eBPF) tech-

nology in monitoring real-time networks [p5] to reduce resources overhead, e.g. CPU,
memory, I/O operations by reducing the computations needed while also delivering
results at earlier stages of packet reception following the latest methods in network

monitoring [p6], addressing the challenges in monitoring real-time networks [p7].
Some of the features of an ideal real-time network include:

1. High Performance: The network must guarantee high throughput and low latency
in order to meet real-time requirements of complex applications.

2. Determinism: A network is deterministic when there is little to no jitter during

packet transmission.

3. Fault Tolerance: An important criterion for any safety-critical system is to have
high reliability. A safety-critical network must be able to tolerate both permanent
and temporary faults without leading to catastrophic results.
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4. Unified Network: A single network is expected to carry different classes of traffic

(critical, sub-critical and non-critical traffic) within the same medium.

To help quantify these essential features a real-time network monitoring system
that collects and analyses measurements from the network nodes while minimizing
the impact on normal traffic and ongoing network operations in order to maintain the
real-time network features is needed.

Network management involves controlling and monitoring packets that travel to and
from a specific host and network. According to Dominik Scholz et al. [p5] the application
itself should be able to determine its interpretation and processing of a network packet
and what information to send back in theory. However, current implementations do not
do so for four reasons [p5].

Scholz’ work suggests that one way to reduce overhead and traffic is to filter as early
as possible. This can be done by having the applications developers bundle the policies
with the application. Furthermore, the system administrator would not have to manage
large amounts of varying and constantly changing configuration files, and could instead
focus on other important tasks. Ultimately, modern applications must meet performance

and latency requirements, which can complicate policy implementation and verification.
The Linux kernel provides a framework for user-space packet filtering, which is

used by the user-space firewall Iptables UFW. In the case of Iptables UFW, the Netfilter
framework is used to filter packets in user space. The user-space firewall Iptables UFW
is a command-line tool that provides a simple interface to the Netfilter framework, which

allows implementing various networking-related operations using custom handles. It is
used to configure the firewall rulesets on a Linux system.

Previously, all host packet filtering rules were installed centrally in the kernel. In
order to configure and maintain a centralized rule set, e.g., iptables or nftables, root
access is necessary. Even before rejecting a packet in kernel space, each packet is already

copied to memory and undergoes basic processing. To mitigate these problems, there
is a trend toward either moving the packet filtering to a lower level or separating the
ruleset into parts and moving them into user space.

The extended Berkeley Packet Filter eBPF can significantly reduce the amount of
traffic generated in the data collection phase as well as the processing power needed in

filtering and processing ingress/egress packets by extending the access to kernel-level
functions and reducing the context switches since eBPF code runs in a sandbox within the
kernel. This also allows capturing important packets at earlier stages. Additionally, eBPF
code is event-based, rather than sampling-based. This makes eBPF-based observability
tools much more accurate and more efficient than traditional sampling-based alternatives

because the program only runs when triggered by an event. Aside from the eBPF [p8],
the integration with the Linux eXpress Data Path   (XDP) for early access and dropping of
incoming network packets, to gain more accurate measurements from the network while
minimizing the traffic and processing load since the processing occurs in the kernel at
very early stages thus requires less jumping between user-space and kernel-space. More

details about eBPF are found in section 2.

1.3 Assumptions and Scope

Future industrial communications involve high data rate best effort traffic working along-
side real-time heterogeneous traffic for time-critical applications with hard deadlines.
This work addresses some challenges associated with monitoring networks of that type.
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The expected result of this thesis is a software design of a benchmarking and monitoring
system for real-time networks. The system benchmarks the network performance and
records the results. The results can be used to identify any problems with the network
and to improve the performance. This work distinguishes itself from other works by
focusing on low-level operating system challenges involved in real-time (RT) network

traffic filtering and by utilizing eBPF and XDP in the process of packet filtering to
reduce resources consumption and gain more accurate measurements. Packet filtering
follows two stages to study the packets: packet capture and packet analysis. Packet
capture involves capturing packets from the network. Packet analysis is used to examine
the packets and extract the relevant information. eBPF contributes to both of these stages.

The proposed system has been implemented and tested on a Linux platform. Further
testing on different environments hasn’t been done.

1.4 Objectives and Contributions
The benchmarking and monitoring system proposed is intended to be used in future
works to enable RT network monitoring. A hard real-time system guarantees that tasks

will always meet deadlines, providing a high degree of reliability. The proposed concept
is designed to be extended to meet different applications or needs. This system targets
the measurement and control of network flow in real-time while having minor impact
on hardware resources.

1.5 Methodology and Outline

The structure of the following sections is as follows:
In Chapter 1, the context, research area, and application areas of the study are

described. This chapter also introduces the reader to the problem this work is dedicated
to solve, the expected results and scope.

Chapter 2 reviews the relevant literature as well as the related state-of-the-art network

technologies and presents existing monitoring challenges and solutions for RT networks,
followed by related work helping addressing the problem.

Chapter 3 provides requirements analysis and describes the research methodology
used in the study.

In chapter 4, the approach and concept are presented by describing the findings of

the study, software architecture, and a summary.
Chapter 5 describes the implementation of the real-time monitoring system based

on the requirements analysis. It provides a general and more in-depth overview of the
software dsign, finished with conclusion.

In chapter 6 the concept and implementation are evaluated through experimental

setup followed by comparative analysis based on the requirements analysis output
followed by conclusion.

Chapter 7 summarizes the thesis results and provides an overview of possible future
work.
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We begin this chapter with a brief introduction to the latest network technologies that
could benefit from this work. The chapter also discusses modern network monitoring
practices and challenges associated with monitoring RT networks. In the last section
of this chapter we will discuss packet filtering on Linux machines, eBPF and XDP as
well as their use in RT network monitoring. The determining research question and the

problem addressed in this thesis are summarized in the end of this chapter.

2.1 Modern network technologies
Industrial automation will become more efficient with the help of advancements in
technology, including higher bandwidth and ultra-low latency provided by 5G and TSN.
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Ethernet has been upgraded over the years to support these needs, and TSN is being

developed as a more reliable, deterministic protocol than Ethernet. For real-time systems,
determinism is an essential requirement, and TSN is a crucial component for managing
traffic between devices. As machines become more integrated and communication
between machines becomes essential, the convergence of IT and operational technology
communications becomes more essential. Industrial automation will eventually benefit

from the increased bandwidth with the advent of 5G and eventually 6G.
Networking technology had to evolve to keep up with the increasing demand for

bandwidth. The Internet and Wi-Fi are now being used to perform a wide range of
tasks, including live streaming video, virtualization, cloud computing, and IoT devices.
This has resulted in a demand for more bandwidth. With 5G, the level of speeds and

bandwidth necessary for supporting fields like autonomous driving and the internet of
things will be greatly improved, while TSN will manage data traffic between the devices
and the network.

This section presents some of the latest network technologies and the challenges
associated with them. It also introduces the role of network monitoring.

2.1.1 TSN
Time-triggered communication protocols are increasingly deployed for safety critical
applications because of the high predictability of message transmissions. In a time-
triggered communication network, each node is assigned a time slot in which it can
send a message. The messages are transmitted in a predefined order, and the receiving

node can only process the messages that are received in its assigned time slot. This
guarantees that the messages are processed in the order in which they are transmitted,
which is essential for safety-critical applications. The time-triggered communication
protocols provide a number of advantages over traditional communication protocols,
such as Ethernet. First, the time-triggered protocols are deterministic, which eliminates

the need for retransmissions and ensures that the messages are processed in the order
in which they are transmitted. Second, the time-triggered protocols provide a high
degree of reliability, as messages that are not received in the assigned time slot can be
retransmitted. Finally, the time-triggered protocols are scalable, and can be used for
large-scale systems. Examples of communication systems based on the time-triggered

mechanisms include SAFEbus [p9], TTCAN [p10], TTEthernet [p11] and TSN [p12].
TSN is a set of standards that extends Ethernet capabilities to support hard real-

time communication. To guarantee highly synchronized communication with very low
latency and jitter values, IEEE 802.1 Qbv is proposed based on the time-triggered
communication paradigm. Combining this with the priority classes defined in IEEE

802.1Q[p12].
TSN is mainly used in industrial and other applications that require guaranteeing

real-time communication. In networked control systems, the performance of industrial
Ethernet networks must be evaluated in real time. There have been efforts to monitor
TSN networks. However, existing work about network monitoring cannot meet the

real-time monitoring requirements of TSN, such as network state information accu-
racy and time synchronization [p13]. For example, the IEEE 802.1 Time-Sensitive
Networking Task Group (TSN TG) is working on a standard to ensure the real-time
performance of Ethernet networks. The TSN TG has developed the IEEE 802.1Qbv
standard, which defines the behavior of traffic flows in TSN networks. The standard de-

fines how to reserve bandwidth and ensure that deadlines are met. The existing work on
real-time performance monitoring of TSN networks is mainly focused on the detection
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of congestion and the estimation of end-to-end latency. However, these methods are not
accurate enough to meet the monitoring requirements of TSN networks. In particular,
the accuracy of the estimated end-to-end latency is not good enough to support the

design of networked control systems. There is a lack of a comprehensive framework
for the real-time performance monitoring of TSN networks. The existing work does not
consider all aspects of real-time performance, such as the accuracy of state information
and the synchronization of clocks. A comprehensive framework is needed to support
the design of networked control systems.

2.1.2 5G
5G networks are expected to be much more complex than earlier generations of networks.
They use a wider range of frequencies, and require more antennas and base stations to
cover a given area. 5G networks will likely be used for a wide range of applications,
including industrial IoT, autonomous vehicles, and 5G-based home broadband. This will

make it more difficult to determine which applications are causing network congestion
or performance problems, making monitoring 5G networks much more difficult than
traditional networks. In addition, 5G networks are expected to be more dynamic, as
antennas and base stations will be deployed and removed more frequently. This will
make it difficult to maintain an accurate view of the network performance and identify

problems. To address these challenges, network operators will need to adopt new tech-
nologies and techniques for monitoring 5G networks as existing network monitoring
systems are unable to support the dynamic topologies and new technologies of modern
networks, such as cloud networks and virtual environments. SDN and Network Function
Virtualization Network Function Virtualisation   (NFV) can be used to address these

challenges and realize 5G networks by making 5G networks more flexible, scalable,
open, and programmable. However, the use of SDN and NFV brings new challenges
to network monitoring and troubleshooting. SDN and NFV can change the network
topology and the way that traffic flows through the network. This can make it difficult to
determine where problems are occurring. Additionally, SDN and NFV introduce addi-

tional vulnerabilities and risk of outages with their increased complexity and resource
requirements.

Celdrán et al. [p14] propose a solution to efficiently orchestrate the monitoring
services using SDN and NFV. However, this work does not discuss the issue of resource
consumption due to the high level of virtualisation, especially when using OpenStack

to instantiate the virtual resources. This is particularly crucial for networks with large
traffic.

Another work by Thiago et al. [p15] discusses the drawbacks of using DPDK
technology for fast packet processing in edge nodes running on 5G networks, in terms of
excessive resource occupation. Thiago’s solution investigates OS level packet processing

mechanisms and proposes utilizing eBPF and XDP for lower resource consumption and
higher throughput.

2.1.3 SDN
SDN technology is an approach to network management that enables dynamic, program-
matically efficient network configuration, simplifying the implementation of network

monitoring solutions. This technology is used in [p16] and [p17]. There have been
many efforts to monitor SDN network health in real-time using different techniques.
One work [p18] overloads the SDN controllers using tools such as Cbench [p19] and
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hcprobe [p20]. Another work [p21] uses log data collected from OpenFlow switches,
host machines and the SDN controllers in a non-invasive style to monitor SDN network

health under network overload as well as a security attack. However, these works only
test the network using active probing and thus cannot detect anomalous behavior in the
network. Using such techniques heavily affect the network performance and thus cannot
be used in a production network.

2.1.4 Fieldbus

Fieldbus delivers guarantees for safety-critical distributed real-time applications operat-
ing with strict temporal constraints that rely on deterministic networks with low latency
and jitter. Traditional fieldbus networks require additional error detection and avoidance
mechanisms, thus they are not suitable for safety-related controls [p22]. On the other
hand, conventional networks have appropriate error detection and correction methods,

yet and without modification they lack the ability to independently and rapidly detect
safety failures caused by the network, the connection, or the device in between. An
independent safety software layer is necessary to detect connection failures in order to
be able to implement the required emergency shutdown action to avoid danger [p23].

2.2 Network monitoring

Network monitors analyze data traffic and identify problems with the network. They
also help to optimize network performance and troubleshoot issues. Network monitors
use a variety of tools to collect data, including packet sniffers, flow monitors, and
protocol analyzers. This section is dedicated towards discussing the latest methods and
challenges in network monitoring. The monitoring operations build a network model

that describes the network’s overall behavior and represents the operational status of the
network, which is used for troubleshooting and future planning of network design or/and
network configurations. Lee et al. [p7] divides the network model into five measurement
phases/layers as in figure 2.1.

Figure 2.1: the monitoring model [p7]
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One of the main challenges in RT network monitoring is improving efficiency of the

monitoring process. Depending on the application area and size there could be a vast
amounts of data to collect, analyze and store. This problem becomes more important for
safety-critical applications that have less tolerance towards resources insufficiency. As
mentioned in figure 2.1 generally the monitoring model consists of five layers dividing
the responsibilities. We discuss the roles and challenges of each layer below [p7].

2.2.1 Collection layer

Active and passive monitoring are two ways of collecting measurements from a network.
In active monitoring, test traffic is injected into the network, whereas passive monitoring
simply observes the traffic that is already passing through the network. Activate moni-
toring is useful for directly measuring certain parameters, such as bit loss, latency, and

throughput. However, it can also lead to high bandwidth consumption, which can be
mitigated by adjusting the size and frequency of the active probes. In passive monitoring,
no additional traffic load is generated, but it can take a long time to observe the behavior
of the network. Device information, such as CPU and memory usage, can be collected
passively. Some works use both methods to gain a more complete understanding of the

network [p24] [p25].

2.2.2 Representation layer

In this layer the measurements from all contributing nodes are standardized and syn-
chronized. NETCONF [p26], and YANG [p27] for example provide standards for this
purpose. One of the major issues in this layer is to synchronize the collection of mea-

surements from heterogeneous and distributed devices in time.

2.2.3 Report layer

Data collected by the monitoring system is transformed into consumable information by
the report layer. This might mean summarizing data into graphs or tables, or sending
alerts when thresholds are crossed. An easy-to-use and understand report layer is often

an essential part of a monitoring system. In real-time networks, it can be challenging to
transfer huge amounts of data at this layer. There are many ways to reduce the amount
of data that needs to be sent in order to report measurements, such as aggregating similar
measurements or using bandwidth-saving encodings [t1]. The frequency of polling
requests also needs to be considered; adjusting the frequency allows for a trade-off

between accuracy and efficiency.

2.2.4 Analysis layer

Network traffic analysis is the process of inspecting and managing the traffic passing
through a given network. There are a variety of different functions that can be performed
as part of this process, including general-purpose traffic analysis [p28], estimation of

traffic demand, traffic classification per application, mining of communication patterns,
fault management, and automatic updating of network documentation [p7]. By perform-
ing these functions, network administrators can better understand the traffic patterns
within their network and identify any potential issues.
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2.2.5 Presentation layer

Operators use various tools to visualize network traffic, depending on the type of analysis
required. One of the biggest challenges is to visualize huge amounts of data in real-time
without leading to a service crash or delay. Network monitors are tools used to track
and display network activity in real-time. They can show where traffic is coming from,
going to, and the volume of traffic. Traffic analyzers are used to examine traffic flows

and performance between two points in a network. They can help identify bottlenecks
and optimize network traffic. Network mapping tools help create a visual representation
of the network topology, which can help with troubleshooting and security analysis.

2.3 Packet filtering in Linux machines

Linux packet filtering provides a basic layer of security for the network. By allowing

or denying certain packets, it can control which traffic is allowed to pass through the
network and which is not, helping to protect the network from unauthorized access and
attacks. Furthermore, traffic control can also prioritize certain types of traffic over others,
improving the performance of RT networks with multiple priority classes. Packets can
be filtered at different stages on their way from the physical network interface until they

reach the application. Dominik et al. [p5] divides packet filtering into four levels, from
the lowest in abstraction to the highest as in figure 2.2.

Figure 2.2: Levels of packet filtering [p5]

2.3.1 Hardware Level

First, packets are filtered on the network interface card (NIC). Modern server NICs that
include hardware offloading and filtering can be configured using driver parameters and

ethtool tools. Its functionality is limited and largely determined by the vendor and NIC
used, which means there is no standard interface for configuring it.
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2.3.2 Network Level
Network level firewalls filter packets before they are processed by the routing subsystem.
Compared to a system-level firewall, this is more efficient due to fewer CPU cycles

being consumed by dropped packets.

2.3.3 System Level
The second level is in the kernel, where the network stack resides. The kernel provides
a set of hooks that can be used to intercept and filter packets. Input hooks are placed
at different locations in the processing, such as in the routing subsystem of the Linux

kernel before the application is launched. However, this must be done with root access
and system-specific knowledge because different rules may interfere and the application
cannot be shipped with its own packet filter. This level is well-defined and relatively
easy to use, but it is also low-level and provides no help in configuring filters using
a dedicated filtering device in front of the firewall, like a stateless packet filter or a

Layer 4-7 switch. This has the advantage that all traffic is processed by the filter, which
can lead to higher performance and lower load on the firewall. However, this approach
requires more complex configuration and can be more expensive.

2.3.4 Application Level
This level is in user space, where a variety of tools can be used to configure packet

filters. These tools include the ip command, iptables, and various firewall management
frameworks. They provide a high-level interface for configuring filters, but they are also
complex and difficult to use. A firewall at the application level looks at traffic directed to
a particular application. With systemd’s socket activation, application developers can in-
clude application-specific eBPF-based packet filters in sockets to allow their application

to include packet filtering rules that can be deployed along with their application. This
approach has the advantage that it is generally available and can be run on a wide range
of devices. However, performance can be lower than with dedicated hardware filters.

2.4 The Berkeley packet filter eBPF
The Berkeley packet filter eBPF is a recent technology available in the Linux kernel,

which extends the user capabilities to control kernel-level activities. It is an instruction set
and an execution environment inside the Linux kernel, enabling modification, interaction,
and kernel programmability at runtime. The eBPF-based packet tracing is utilized for
monitoring tasks and network traffic in real-time. Although it is commonly used for
building proof-of-concept applications, it has proven to be challenging to extend those

applications to more complex functionality due to its limitations[p8]. eBPF allows
user-space applications to inject code in the kernel at runtime, i.e., without recompiling
the kernel or installing any optional kernel module. This results in a more efficient
system.

The figure 2.3 shows the flow of eBPF programs from execution at user-space

to the injection of network tracing points inside the kernel. The eBPF program gets
compiled using Low-level virtual machine   (LLVM) compiler and then attempts to load
the compiled eBPF bytecode into the kernel after passing eBPF verification process first.
The eBPF context runs then inside the eBPF virtual machine. The eBPF program is
triggered on an event by attaching hooks in the kernel. These hooks are:
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• Tracepoints: Similar to breakpoints, but instead of stopping execution when a
breakpoint is hit, log information are collected for debugging reasons. Tracepoints
are static locations in the kernel, e.g. disk IO operations.

• Kprobes: kprobes are a facility in the Linux kernel that allow to dynamically
execute code on a kernel function. It can be used to analyze the behavior of the

function, or to patch it in order to change its behavior.

• Uprobes: uprobes are similar to kprobes but allow to dynamically execute code
on a user-space function.

• Perf events: Provide a command line tool and subcommands for various profiling
tasks allowing to collect performance data about the running kernel by sam-

pling or doing monitoring counts. This data can be used to identify performance
bottlenecks, or to diagnose other performance issues.

Figure 2.3: eBPF program flow [t2]

The importance of eBPF and XDP is highlighted by its fast adoption since its
introduction in the Linux kernel in 2014 by both industry and academia. Their use
cases have grown rapidly to include tasks such as network monitoring, network traffic

handling, load balancing, and operating system insight.

2.5 The eXpress data path XDP

The eXpress data path XDP is fast programmable packet processing framework in
the operating system’s kernel. It is the lowest layer of Linux network stack. It allows
installing programs that process packets into the Linux kernel. These programs will be

called for every incoming packet.
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Figure 2.4: XDP packet processing overview [t3]

XDP allows adding or modifying programs without modifying the kernel source
code, whereas eBPF programs modify the (programmable) kernel operation in runtime
without requiring recompilation of the kernel [p29]. eBPF can also be used to program
the XDP in order to process packets closer to the NIC for fast packet processing. Devel-

opers can write programs in C or P4 languages and then compile to eBPF instructions,
which can be processed by the kernel or by programmable devices (e.g., SmartNICs).

Figure 2.5: eBPF XDP program example in C language [p29]

Figure 2.5 gives an overview example of an ?? program in C. This program drops
all incoming packets at the driver level. A more complex program can be implemented
by adding rules and conditions on packet dropping.

2.6 Conclusion
Benchmarking and monitoring RT networks require instantaneous response while ensur-
ing minimal bandwidth, CPU, and memory consumption to provide accurate view of the
network state. Some key features of a real-time monitoring system are low latency and
high throughput, ability to handle large data sets, efficient use of system resources, fault

tolerance and scalability. Some works suggest [p30] applying machine learning methods
or reducing the amount of collected data or the number of nodes under monitoring isn’t
ideal in industrial networks where network communication needs to be deterministic.
An optimal solution for monitoring RT networks would be to collect the necessary data
without compromises that might affect the network’s determinism by removing nodes

from the monitoring system or applying stochastic evaluation using machine learning.
Another alternative approach [p16] to reach real-time capability does not bring along
general applicability and flexibility and lacks the concept of determinism.
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Traffic collection and processing requires priviliged access to kernel sections from
user-space. Such priviliged access is costly in terms of context switching and jumping

between kernel-space and userspace. The isolation between user-space and kernel-space
forms a hurdle of achieving real-time network monitoring. Each operating system
or hardware handles the unprivileged access to priviliged resources differently. For
example, a so called protection ring is implemented in the x86 CPUs making different
levels of access to resources through hierarchical protection domains 2.6.

Figure 2.6: privilige rings for the x86 available [p31]

These hardware and OS-based isolation mechanisms provide security to the hardware
access with the disadvantage of performance reduction. Since network adapters are
IO devices they require priviliged access, thus affecting computation overhead and
response speed negatively. Capturing and filtering network packets is an essential part
of implementing any network monitoring system. However, doing such operations in

the network require priviliged access.
The eBPF technology solves this problem with its packet tracing capabilities by

allowing capturing packets at an early stage of packet reception. eBPF also offers a
flexible and safe programmable environment inside the Linux kernel allowing loading
and modifying eBPF programs during runtime and interacting with kernel elements

such as kprobes, perf events, sockets, and routing tables [p32]. This feature increases
the overall security level and makes the system more flexible by dynamically replacing
programs in a live monitoring system. Additionally, The eBPF code compiles to a variety
of CPU architectures, making eBPF programs scalable and interoperable.

Figure 2.7: Linux kernel network stack[p29]
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The figure 2.7 shows how network packets entering the operating system are pro-

cessed by many layers in the kernel before reaching its destination application. Generally,
higher layer has a lower performance of networking hooks. According to Vieira et al.
[p29] all network packets heading to a userspace application pass through these layers
and can be intercepted and modified by modules like iptables, which is found within
the Netfilter layer. There are several places in the kernel where eBPF programs can be

attached to enable packet filtering.

Figure 2.8: bpf iptables performance comparison [p33]

The work of Betrone et al. [p33] proves that packet filtering using eBPF brings a
significant improvement on the number of packets processed per second as illustrated in
figure 2.8. This reduces the resources overhead in terms of computational power as well
as bandwidth consumption. Packet filtering is important in monitoring deterministic

RT networks because it allows for the inspection of packets as they are transmitted on
the network, which can help reducing resources overhead due to unnecessary packets
or redundant requests. Additionally, packet filter allows for the identification of any
issues that may occur with the transmission of packets, which can help to ensure that the
network remains operational and that data is transmitted accurately. Implementations of

RT network monitoring systems that focus on operating system  (OS) processes such as
packet filtering are still missing.

In this chapter, an overview of modern network technologies is provided, along with
the role of network monitoring in designing and maintaining networks. Afterwards,
network monitoring is described and a five-layer classification model of monitoring

operations is provided. It includes an analysis of the monitoring functions of each
layer, with particular focus on how they affect the network. Following this discussion,
the paper analyzes packet filtering and its role in collecting network information for
monitoring systems, as well as the contribution of eBPF and XDP to dealing with
real-time monitoring issues. The next chapter presents an analysis of the requirements

for implementing a system that monitors network traffic in real time, addressing the
challenges from the OS side.
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This chapter presents a requirements analysis following a top-down approach to
determine general, intermediate, and specific requirements. First, an overall high-level
requirement analysis identifiying the high-level requirements is presented. A more in-

depth system-related requirement analysis of the approach follows. The process finishes
with a less abstract explanation of each component in the approach.

3.1 Top-level requirements
Top-level requirements describe the needs of the monitoring system that are not specific
to any technology or implementation. For instance, the real-time network monitoring

system needs to be able to identify and isolate network issues in order to allow for timely
resolution. Additionally, the system needs to be able to provide an overall view of the
network health in order to identify issues before they become major problems.

Table 3.1: Top-level requirements

# Description

TL1: Real-time capa-
bilities

Describes how the network monitoring and reporting tools need
to provide performance insights into the network in real time.
This helps identify performance hiccups early and avoid potential
outages.

TL2: Comprehen-
sive monitoring capa-
bilities

This requirement implies using a single network monitoring tool
to monitor a variety of network components and various operat-
ing systems, since using separate tools would require constant
management and incur additional resource costs.
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Table 3.1: Top-level requirements

# Description

TL3: Scalability A network monitoring system needs to be scalable, i.e. more flex-
ible to changing requirements or needs without compromising
on the quality of monitoring. As networks grow, their scalability
helps ensure that their performance doesn’t degrade significantly,
regardless of their size, as productivity rises, needs change and
their adaptations keep pace. Scalability is achieved through net-
work monitoring tools that can be easily deployed and managed in
a distributed environment, and can be scaled up to support a large
number of devices.

TL4: Automation Automation makes network monitoring solutions far more use-
ful by saving time and resources. Automation allows network
monitoring tools to react based on threshold values or predefined
rules/criteria. By automating monitoring, the tools can spot and
resolve problems automatically in a proactive fashion, send alert
notifications, forecast storage growth, and more.

TL5: User manage-
ment

In order to monitor the inspected network effectively a user-
friendly user interface module is required. This module also allows
the users through an interface to interact with the monitoring sys-
tem as a whole and give the user the ability to specify own tests.

TL6: Visibility Visibility is the ability to see what is happening in the network.
It is important to have a clear view of the network traffic and the
devices that are connected to it, so that users can identify and
troubleshoot problems quickly.

TL7: Reporting Reporting is a key usability aspect of network monitoring tools.
Reporting is the process of generating reports based on the data
collected by the network monitoring tools. Reporting is a key us-
ability aspect of network monitoring tools, as it allows the network
administrator to generate reports based on the data collected by
the network monitoring tools.

TL8: Alerting Alerting is the process of notifying the network administrator of
an event. Alerting is an important aspect of network monitoring,
as it notifies the administrator of a potential problem. Alerting is a
key usability aspect of network monitoring tools, as it allows the
network administrator to take action, based on the alert.

3.2 System-level requirements
System-level requirements are the specifications that are related to the environment the

monitoring system is running in.
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Table 3.2: System-level requirements

# Description

SL1: Low resources
consumption

Monitoring systems must not overload any of the resources. Re-
source unavailability could create a bottleneck in the system and
cause unexpected behavior. This is crucial to ensure the stability
and integrity of the monitoring system.

SL2: Interoperability Interoperability is often achieved through the use of standards. For
example, the Simple Network Management Protocol (SNMP) is
a standard that allows different network management systems to
exchange information.

SL3: Security There are many aspects of network security that can be posed
by the monitoring system, including hardware, software, viruses,
spyware, vulnerabilities and other factors that can compromise the
integrity of a network. The monitoring system needs to stay up to
date with the latest security patches and software updates.

3.3 Feature-level requirements
Feature requirements are specific features or functions that a software system must
provide as part of the overall software. They are used as the basis for design, development,
and testing.

Table 3.3: Feature-level requirements

# Description

FL1: Dashboard Dashboards are a key usability aspect of network monitoring tools.
Dashboards are a visual representation of the data collected by the
network monitoring tools. Dashboards allow the network adminis-
trator to quickly understand the status of the network supported
by visualizations.

FL2: Data persis-
tency

In order to guarantee data persistency a database is required to
be able to retrieve the data in case of unexpected failure. Time-
series databases are highly optimized for real-time monitoring
applications. The architecture of time-series databases makes them
particularly suitable for real-time monitoring applications since
they possess important architectural features such as time-stamp
data storage and compression, data lifecycle management, data
summarization, and time series aware queries.



C
ha

pt
er

4

C H A P T E R 4

C O N C E P T A N D A P P R O A C H

4.0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


4.0.1 Introduction

Chapter 2 discussed the challenges of network monitoring in real time and the role
that packet filters and OS low-level functions play in tackling some of these challenges.
Chapter 3 outlined the requirements for implementing a real-time monitoring system.

This chapter presents the concept and approach of the real-time network benchmarking
and monitoring system based on the requirements listed in the previous chapter 3.

First, the general approach is described and a broad overview about the system
components and their functionalities, is provided. Next, the software architecture of the
real-time network benchmarking and monitoring system will be described based on the

top-level requirements in chapter 3 along with the integration of eBPF and XDP into the
system.

4.1 General discussion

The proposed idea is to design an end-to-end network benchmarking and monitor system
relying on aggregated time series generated from network nodes. Time series hold infor-

mation such as round-trip time RTT, loss, available bandwidth and additional internal
timestamps. The network monitoring system is optimized for real-time communications
by integrating eBPF technology in the data collection process. This system offers a
data visualization service to help read the network benchmarks. The figure 4.1 depicts a
general overview of network monitoring systems based on Lee’s work [p7]. This figure

maps some of the top-level requirements listed in requirements section 3.
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Figure 4.1: High-level diagram of network monitoring

Based on Lee’s work, monitoring systems are conceptualized as a set of monitoring
operations. These operations are classified into layers as a result of their hierarchical
sequence. In our approach, the monitoring system is composed of four abstract layers.
The first one is the collection layer. This layer collects measurements from the network

when new events occur, pre-processes and standardizes them. The data collection pro-
cess involves gathering measurements passively from the network traffic and can also
inject test traffic by creating sampling packets and sending them to available receiver
nodes. The second layer is called reporting. In this layer, measurement data are exported
after collection and consumed asynchronously by administrative entities through data

exporters. The data can be shared across multiple organizations through a virtualized
infrastructure to allow scalability. In the third layer, data is managed, stored, and mea-
surements are checked for integrity. This is the layer in which all system functions
are controlled. Lastly, the presentation layer represents how the user interacts with the
system. According to Lee, It is easier to monitor network through visual representations,

rather than through numerical data. This is because it is easier to identify issues and
potential problems when they are represented visually. Additionally, it can be helpful to
see how data flows through the network, and where congestion for instance is occurring.
Figure 4.2 illustrates the monitoring system as a black box. More detailed insights over
the internal design will follow in the next section.

Figure 4.2: The monitoring system as a blackbox
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4.2 Software Architecture

The software architecture of the monitoring system is depicted from the three levels of
requirements in chapter 3. The core entities of the software are illustrated in figure 4.3.
The entities are divided into two modules: DataAggregator and DataVisualizer.

The DataAggregator runs directly over the host OS and consists of four components.

The kernelPerf is the metrics collection tool that is designed to measure network perfor-
mance similar in its concept to netperf or tcpdump. It runs within the kernel at low-level
of the OS. It consists of two main programs. The first is an eBPF-based program that
injects multiple tracing points into the kernel when triggered by an event. This program
passively collects network metrics only from incoming traffic. The second program

utilizes XDP to drop sampled packets that have been generated by the PacketSampler
for active probing purposes. As a result, redundant and unnecessary context switches
within the OS along with internal network bandwidth are avoided, particularly in cases
of heavy active probing.

Figure 4.3: The software architecture object diagram

Since Linux kernel has only one XDP hook, only one XDP program can run at a

time, so the program must own the XDP hook in order to use it. XDP is very effective
in dropping packets as explained in Betrone’s work [p33] in chapter 2. XDP is usually
used to mitigate Distributed Denial-of-Service (DDoS) attacks and real-time intrusion
detection (IDS).

The PacketSampler is called by the MetricCollector to generate and send ICMP

probe packets to host nodes. The ICMP protocol is used by network devices to send
error messages and control packets for debugging purposes. ICMP is therefore ideal
for network monitoring in addition to not requiring any peer applications to run on
nodes as in the case of TCP packets. SL2 requirement establishes the importance of
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interoperability as a key element of a homogeneous network. In general, routers and

NICs can handle ICMP packets differently, contributing to different packet loss rates.
Using active probing allows for a more accurate picture of the network state. If

combined with XDP, the resources overhead can be reduced significantly. This can help
meet the SL1 requirement. In addition, the MetricCollector is responsible for controlling
the amount of probe packets injected into the network to maintain network stability.

Finally, the DataAggregator includes a DataExporter. This part collaborates with the
MetricCollector to publish the collected and processed network metrics.

The DataVisualizer also consists of four main entities. The entities are managed
and connected by a Controller. The Controller manages the Database where network
performance metrics are stored along with other metrics from the system, such as

hardware resources consumption rates. The Datareceiver polls metrics published by
the DataExporter periodically and feeds it to the Controller. Finally, the UserInterface
gives the users the ability to manage the monitoring system through a dashboard, Create
visualizations of the available data, set system alarms in case of specific events and
more. The interaction between the software components is illustrated in figure 4.4.

In the requirements section 3, TL3 specifies that the monitoring system needs to
be scalable to accommodate various network topologies. This can be accomplished by
deploying the DataVisualizer in a containerized environment, allowing for horizontal
scaling by creating replicas or vertically by increasing the hardware resources as needed.
The entities are managed and connected by a Controller. The Controller manages the

Database where network performance metrics are stored along with other metrics from
the system, such as hardware resources status. The Datareceiver polls metrics published
by the DataExporter periodically and asynchronously and feeds it to the Controller.
Finally, the UserInterface lets users manage the monitoring system via a dashboard,
visualize the data, set alarms for specific events, and more. The interaction between the

software components is illustrated in figure 4.4.

Figure 4.4: Sequence diagram of the monitoring funcionality from data collection to
visualization
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4.3 Conclusion
In this chapter a general approach is provided following the monitoring model of Lee et
al. [p7]. The software architecture is described by presenting the core components of
the software design and their interaction in details. The part of the software responsible

of data collection utilizes eBPF and XDP technology as described in chapter 2.
The next chapter addresses the underlying problem of monitoring RT network traffic

more precisely. The technologies used for the implementation are discussed, mapping
the solution to the requirements defined in 3.
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5.1 Introduction
In this chapter we discuss the implementation phase following the previous chapter and

the requirements set in 3. The Implementation targets the concept design and defines
the steps required to turn the concept into a working system. The main goal of the
implementation phase is to make sure that the system functions as intended and that
all the requirements have been met. The first step in the implementation phase is to
create a detailed design for the system. This design will include a description of the

system’s architecture, the functionality of each component, and the interactions between
the components.

5.2 Software Design
The implementation consists of two main modules, each module holds different com-
ponents as illustrated in figure 5.1. The DataAggregator consists of four components.

The first component is the MetricCollector, which injects network tracing points in the
kernel using eBPF. The second component is PacketSampler. This component generates
probe packets. The third component is XDP-packetDrop. This component drops the
probing packets at early stages of reception in the kernel. The final component is the
DataExporter. This component holds API endpoints to the collected network metrics.

The second module is the DataVisualizer. This module represents a Docker Com-
pose YAML file. The DataVisualizer runs in a containerized environment over virtual
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hardware, making the software scalable as required in TL3 3.1 depending on the network
topology. This also gives flexibility to the user to deploy the module on any host machine.
The DataVisualizer consists of four components, each of which represents a microser-

vice. The first component is MonitoringServer. The component polls network metrics
from the DataAggregator and stores them. Additionally, it has its own dashboard for
various management practices, including binding metrics exporters, binding databases,
and publishing data to third-party services. Next, there is the Visualization component.
This component reads data from the MonitoringServer and allows the user through dash-

board to analyse and visualize data in real-time. The third component is the Database. A
fourth component, referred to as MetricsExporter, is abstract and unimplemented. One
or more MetricsExporters may exist. New MetricsExporter services can be added to the
DataVisualizer, which can then be binded to the MonitoringServer.

Figure 5.1: The monitoring system’s architecture

5.2.1 Real-time data collection

The implementation of the MetricCollector consists of eBPF tracing programs using
the BPF Compiler Collection   (BCC) library running in a sandbox inside the kernel.
These eBPF programs inject tracing points in the Linux kernel to track network events
and are triggered on events, such as TCP connections, and process creations. eBPF
programs allows reading the collected measurements from the user space, either by

sending details per event or by accumulating the data and passing them via the BPF
map asynchronously. BPF maps can support arrays, associative arrays, and histograms,
and are suitable for passing summary statistics. The figure 5.2 illustrates how the eBPF
program collaborates with the DataExporter to publish real-time network measurements
from the kernel-space. These two components work in parallel.
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Figure 5.2: eBPF packet filtering and data exporting activity diagram

There is a variety of programming languages and frameworks to create eBPF pro-
grams. One of the most popular is called the Berkeley Compiler Collection BCC. BCC
is a library used to create Berkeley Packet Filter (eBPF) programs that analyze network
and OS performance without incurring overhead or posing security threats. BCC elimi-
nates the necessity for users to know deep technical details about eBPF, and provides

many ready-to-use starting points, such as the bcc-tools package containing pre-created
eBPF programs. Additionally, BCC offers a Clang compiler capable of compiling BPF
code at runtime, adapting it to the requirements of a particular target kernel, which
facilitates development of maintainable BPF applications designed to be compatible
with kernel changes. BCC allows writing eBPF programs in many languages such as C,

C++, Python, Lua and go.

eBPF programs are very efficient since they operate in the kernel space and only
trace kernel functions instead of tracing every packet and filtering it. They reduce time
and overhead by avoiding unnecessary context switches.

5.2.2 Active probing

Due to the fluctuations in the passive network flow active probing is necessary to fill the
gaps when less information about the network status is available because of lower traffic
volume as Lee’s work states [p7]. Active probing is essential in order to guarantee up-
to-date real-time monitoring capabilities. Active probing is done by the PacketSampler.
The MetricCollector informs the PacketSampler to create probe packets and send it to

host node similar to pinging via ICMP packets. The MetricCollector collects network
measurements such as latency, RTT, and jitter of the packets sent by the PacketSampler
and the acknowledgment received back. These packets can be then dropped by the
XDP-packetDrop component to save bandwidth within the network stacks and hardware
resources by reducing the number of context switches in CPU. The activity diagram in

figure 5.3 demonstrates the process of active probing and the components involved in it.
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Figure 5.3: Activity diagram of active probing

5.2.3 Real-time data exporter
The DataExporter publishes up-to-date network metrics ready for external service to
scrape asynchronously. The DataExporter uses Prometheus open source Monitoring
framework to expose the metrics. Prometheus has a large ecosystem of off-the-shelf

exporters. Prometheus exporters provide an interface between Prometheus and appli-
cations that don’t export metrics in the Prometheus format. A good example is the
node exporter, which exposes Linux metrics in Prometheus format. Another popular
example is cAdvisor, which exports metrics from containers. An external service such as
a Prometheus monitoring server reads the metrics exposed by the target using a simple

text-based exposition format. When no exporter that fits the application needs is found,
Prometheus provides client libraries that can be used to develop a custom exporter that
translates the metrics in Prometheus format [p34]. There are official client libraries in
go, python, java, and ruby. Additional unofficial client libraries for other programming
languages can be also found [t4].

There are mainly four types of metrics that will help in instrumenting any application
to export metrics:

• Counter: Counters represent a single monotonically increasing number that can
only increase or be reset to zero upon restart, like a counter of HTTP requests.

• Gauge: Gauges are like counters except that their value can change up or down

arbitrarily. For example, temperature or current memory usage.
• Histogram: A histogram collects and counts observations such as responses or

request durations in configurable buckets. It also sums up all observed data points.
• Summary: A summary is similar to a histogram, except it also provides a total

count of observations and a sum of all observed values. it calculates configurable

quantiles over a sliding time window.
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To instrument the data collection application with prometheus a data exporter using
the official prometheus client library is designed. The data exporter establishes an http
server to publish the metrics in prometheus text format as in figure 5.1. The data exporter
then calls and starts the eBPF programs as imported mdules. eBPF programs require

slight modification using one or more of the four metric types to aggregate data to the
DataExporter.

Listing 5.1: data exporter example for eBPF metrics using Prometheus framework
1 from prometheus_client import start_http_server
2 import ebpf_program
3
4 # Start up the server to expose the metrics.
5 start_http_server(port_num)
6 # call eBPF program as module
7 ebpf_program.run_tcpconnlat()

The figure 5.2 is an example of an eBPF pseudo program modified to aggregate data
to prometheus client. In the first lines Gauge is imported from prometheus-client library
and an instance is created in line 2. The data collected by the eBPF program will be

aggregated to the Gauge when a new event occurs.

Listing 5.2: eBPF program called by the data exporter
1 from prometheus_client import Gauge
2 latencyGauge = Gauge(’tcp_connlat_msec’, ’tcp connection latency’,[’saddr’, ’daddr’] )
3
4 define BPF program context
5
6 attach probes to kernel
7
8 def run_ebpfProgram():
9 while True:

10 poll new measurements

The metrics will then be exposed at a specific port. The published metrics are

updated in real time every time the page is reloaded. The figure 5.3 shows an example
output of the format of the published metrics.

Listing 5.3: example output of published metrics
1 metric_x{destination_ip, source_ip"} 25.383
2 metric_y{destination_ip, source_ip"} 0.106
3 # metrix_z as a counter
4 metric_z 397
5 .
6 .
7 .

5.2.4 Visualization
The visualization module is a combination of Prometheus server, Grafana, and database
in a multi-container application. Docker-compose defines the protocol and communica-

tion between the containers. Additional metrics exporters can be implemented whether
in the same docker-compose file containing the DataVisualizer module or externally and
binded later with the monitoring server represented in Prometheus server. Examples of
additional metric exporters are found in figure 5.4. The endpoint host.docker.internal
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exports the collected metrics from the eBPF-based implementation and exposes it to

docker containers to scrape from the host machine.

The MonitoringServer component stores the polled metrics from the DataExporter
menitoned earler in a realational database suitable for time series using HTTP pulls.
The MonitoringServer also has basic visualization service over its dashboard. Grafana
service representing the Visualization component requests the stored metrics from the

MonitoringServer and provides various, more advanced charts, flexible queries, real-
time alerts, and other features through user-interface. Three sub-parts make up the
MonitoringServer: Storage management, data retrieval, and a user-friendly dashboard
as visualized in 5.1. In case of unexpected failure, persistent data storage is guaranteed
as required in CL2 in 3 by binding the database storage within the docker compose

environment to an external volume on the host machine.

Figure 5.4: Prometheus dashboard showing all connected resources of metrics

Grafana is an open-source analytics and interactive visualization tool. It provides
web charts, graphs, and alerts based on data from supported sources. Grafana comes
with a built-in MySQL data source plugin. This allows the user to easily design graphs
by querying and visualizing data from MySQL compatible databases.
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Figure 5.5: Grafana dashboard with example graphs plotting real-time data

In Grafana, users can design graphs at their leisure by selecting metrics and time
series from databases of their choosing as in 5.6. Creating a graph is as simple as creating
a new panel inside a dashboard, selecting the data source and the desired metric/metrics
to visualize. Users can also decide from a number of free templates according to their
needs. The users can also fine-tune their queries using MySQL commands, specify

legends, labels, and much more.

Figure 5.6: Creating a new panel in Grafana
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5.3 Conclusion
In this chapter the software design of the monitoring system is presented and the core
components are discussed in details. The role of eBPF and XDP in the data collection
process and where the packet filtering occurs is described with code examples and

diagrams. The technologies used to build up the system are presented and the reasons
for picking are provided. In the next chapter the implemented monitoring system is
evaluated. In this chapter, the software design of the monitoring system is presented and
the core components are discussed in detail. Code examples and diagrams were used to
explain how eBPF and XDP contribute to data collection and how the packet filtering is

accomplished. The technologies used to create the system are described and the reasons
for their selection are provided. In the next chapter, the implemented monitoring system
is evaluated.
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6.1 Introduction
Software testing is the process of verifying that a software program meets the require-
ments specified, and that it works as intended. Testing is an essential part of the software
development process, and it should be performed throughout the project, from the early

stages of development to the final stages to see. The evaluation process determines how
well the software development project met the requirements. It identifies what objectives
were accomplished and what could be improved in future work.

There are many types of software testing. Functional testing for example verifies
that the functions of the software work as intended. Performance testing verifies that the

software performs as intended under specific load conditions. Security testing verifies
that the software is secure from unauthorized access, use, or modification. Unit Testing
tests individual software components. System Testing tests the system as a whole.

In the first section, two configurations are described, that represent the experimental
setups. Based on these setups, the performance evaluations is carried out on the imple-

mented software. The software is tested to determine the performance outcome than
conventional tools on aspects of accuracy, stability, and hardware resources utilization.
The goal of the performance evaluation is to study the efficacy of utilizing eBPF in
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the approach. Next section conducts a comparative analysis of similar software that
does not use eBPF and XDP technologies. Afterward, a detailed requirement analysis is

conducted to assess the approach based on stated requirements in chapter 3. The results
of the analysis are summarized in the conclusion.

6.2 Experimental validation
In this section, a performance test of the implemented software is carried out on three
different testbed setups. These are, GCP, docker, and a real network consisting of devices

connected to a router.
The GCP node consists of a single VM with 2 cores and 4GB of RAM. The docker

node consists of a single docker container with 1 core. The real network testbed consists
of n devices connected to a router.

The performance test is done to evaluate if the software provides better performance

and less resource consumption. A comparative analysis of the performance of the
implemented software with similar tools that do not use eBPF in packet filtering is done.
In this analysis, the following factors are considered:

1. The time taken by the software to execute the task.
2. The amount of memory consumed by the software.

3. The amount of CPU utilization by the software.

An evaluation testbed consisting of n virtual machines on Google Cloud Service Provider 
 (GCP) is created with the capability of adding more instances to the testbed.
The preparation of the testbed over GCP is briefely mentioned here 8.3.2. Each node
has the following specifications:

• Node series E2
• Machine type e2-standard-2
• 2 vCPU
• 4GB memory
• 10 GB SSD persistent disk

• Ubuntu 18.04 LTS with real-time kernel activation

In a similar way, a containerized evaluation testbed is created. Docker containers are
used as nodes for the benchmarking and monitoring concept instead of GCP instances.
As a result, unrelated factors such as outside connection drops and router bottlenecks are
eliminated from evaluation processes. Docker containers represent the network nodes,

while the monitoring system runs directly on the host. This allows for more accurate
evaluation of the concepts. Docker provides more lightweight, agile computing resources
using a container-based approach, compared with cloud computing. The process of
setting up a testbed over the cloud is more complex and time-consuming. With docker,
users can create a self-contained environment with all the necessary software, libraries

and configurations needed for their application. With this approach, the application and
all its dependencies can be run on any machine, regardless of the operating system.
The concept is evaluated in docker environment, similarly to a GCP-based monitoring
concept. The same performance metrics are measured, and the results are compared.
The docker-based monitoring concept is found to be more efficient than the GCP-

based monitoring concept. The Docker-based monitoring concept is faster and uses less
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resources. The preparation of the testbed using docker containers is briefely mentioned
here 8.3.1.

6.2.1 Setup 1
The first setup consists of 2 nodes with the configurations described in the previous

section 6.2. One nodes represents a host node under monitoring and the implementation
runs on the second node. In docker environment the implementation runs directly on the
host machine. The following diagram shows the network topology 6.1.

Figure 6.1: The testbed architecture

6.2.2 Setup 2
In the second setup, the testbed from the first setup is expanded to 5 test-nodes, totalling

5 hosts and 1 monitoring node as illustrated in figure 6.2. The nodes have similar
specifications to the nodes from the first setup. This setup is designed is to examine the
implementation under pressure.

Figure 6.2: Testbed for stress testing
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6.3 Performance evaluation
Evaluating the performance of the implementation is essential to understanding its

capabilities and benefits. In order to do so, objective benchmarks must be used that
remove any unrelated factors that might affect the results. The first benchmark evaluates
the stability and accuracy of the latency measurements. This is important to ensure
that the eBPF-based tool is providing accurate information in real-time. This section
evaluates the robustness and accuracy of the eBPF-based approach compared to legacy

tools such as ping. The testbed used n devices running on separate hardware connected
to the same router.

6.3.1 Evaluation on single node
In the first part of this test, a testbed consisting of two native machines connected to a
local network is set up as in figure 6.1. The monitoring node sends 100 ping requests

to Node1 as illustrated in figure 6.1 at a rate of one request per 3 seconds in order
to measure the round trip time (RTT) of the connection. For latency measurement,
an example MetricCollector program based on eBPF is implemented similar to ping
program for comparison. The test was repeated multiple times to evaluate the test
results for rebustness. Figure 6.3 shows that the proposed approach using eBPF provides

approximately 5 times lower latency than that of ping.

Figure 6.3: Latency comparison of eBPF example MetricCollector with non-eBPF based
solution running on testbed setup 6.1

Information about the average latency and the variance of the measurements can
be found in table 6.2. The standard deviation with the MetricCollector example using
eBPF to capture packets is 5 times lower than with ping. Therefore, the implemented
MetricCollector measurements are more consistent.
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Tool Average latency [ms] Standard deviation [ms]

eBPF MetricCollector 0.179 ±0.153

Ping 0.766 ±0.528

Table 6.2: Latency results from eBPF-based MetricCollector vs. ping on Docker testbed

6.3.2 Stress-test evalaution

The next step is to stress-test the two tools, eBPF-based example MetricCollector and
ping, on three different testbeds by sending large numbers of ping requests simultane-
ously to all host nodes from the monitoring node to n host nodes.

As a first testbed, docker containers running light Linux alpine images are used.

In the second testbed, virtual machines are connected by one private network running
on GCP, the Google cloud service. A third testbed uses real devices connected to one
physical router inside a private network. The monitoring node runs on native hardware.

Table 6.3 shows that GCP and Docker produce similar results. eBPF MetricCollector
provides latency measurements about 7 times faster than ping in both testbeds. The

standard deviation of ping is 2 times higher in the GCP testbed and 3 times higher in the
Docker testbed, respectively. Using native machines for real-world testbed evaluation,
the difference in performance rises significantly. The results of eBPF remain relatively
constant. However, ping measurements vary greatly.

Testbed Tool Average latency [ms] Standard deviation [ms]
GCP eBPF MetricCollector 0.634 ±0.1.15

Ping 3.577 ±3.258
Docker eBPF MetricCollector 0.747 ±1.851

Ping 3.054 ±5.553
Native eBPF MetricCollector 0.193 ±0.262

Ping 51.134 56.990

Table 6.3: Average latency and standard deviation of the MetricCollector and ping on 3
different testbeds

An illustration of the results of the latency testing on the three testbeds can be

found in Figure 6.4. During heavy active monitoring tests, both tools show fluctuation.
MetricCollector, however, shows much less fluctuation thanks to the early packet captur-
ing with eBPF. This is because the MetricCollector is able to collect data at a higher
frequency at earlier stages, which allows for a more accurate evaluation of latency. By
running MetricCollector at a lower level in the network stack, RTT measurements can

be significantly faster than those reported by ping. Additionally, XDP supports hard-
ware timestamping on modern systems, which is a more accurate method of measuring
elapsed time than software timestamping.



C
ha

pt
er

6

6.3. PERFORMANCE EVALUATION 37

Figure 6.4: Latency measurements from the eBPF-based and non-eBPF tools on 3
testbeds
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6.4 Hardware utilization evaluation

This benchmark evaluates the resources utilization of the tool. It measures how much of

the system resources the concept is using in order to function. The test measures CPU
utilization of the monitoring system in its entirety. To do so, the BCC tool profile.py is
used to collect stack traces from the whole operating system for 60 seconds, while the
monitoring system is running and collecting various hardware and network metrics. The
FlameGraph tool then converts the output from the profiler into a more readable flame

graph in SVG format, as shown in figure 6.5. On the x-axis, the graph shows the most
frequent CPU-consuming code in the operating system in alphabetical order, and on the
y-axis, it shows the stack traces ordered by the way the profiler reads them.

As visualized in figure 6.5, prometheus uses 16.40% of the CPU, while
node_exporter - a non-eBPF metrics exporter - accounts for 34.57%. Meanwhile,

the MetricsExporter marked in green box on the left side with the MetricCollector
running in eBPF VM marked in green box on the right side use together only 5.56% of
the CPU. Based on these results the MetricsExporter utilizing eBPF utilizes almost 7
times less CPU compared to node_exporter. However, node_exporter collects a greater
number of metrics. Most profilers cannot trace the full stack of XDP programs. However,

the XDP packet dropper running on the LLVM can still be traced on the left side marked
in green. This flame graph was generated following the instructions in 8.10.

Figure 6.5: Flamegraph
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6.5 Comparative Analysis
Comparative analysis is a process of reviewing and comparing two or more items to
identify similarities and differences. Requirements evaluation is the process of assessing

the suitability of requirements against predefined criteria. Comparative analysis can be
used to assess the strengths and weaknesses of different options, to identify potential
areas of agreement or disagreement, or to simply gain a better understanding of the
items being evaluated.

6.5.1 Requirement Evaluation

In this section the requirements are evaluated in a table fashion to determine which
requirements are satisfied and which ones are open for future work. Below is a table
that evaluates the requirements in the order in which they were presented in chapter 3.

6.5.1.1 Top-level requirements

This section discusses the top-level requirements listed in section 3.1 for designing a real-

time network monitoring tool. Specifically, the requirements call for a system that can
continuously track network performance and identify issues in real-time. Additionally,
the system should be able to provide actionable insights to help administrators optimize
their networks. An evaluation of top-level requirements based on the implementation is
shown in table 6.4 below.

Table 6.4: Top-level requirements

Requirement Approach

TL9: Real-time capa-
bilities

The real-time monitoring capability of the network was achieved
by using eBPF for packet filtering. This results in an earlier de-
tection of network events, bringing the system closer to real-time
under the condition that the operating system’s kernel is real-time
enabled.

TL10: Comprehen-
sive monitoring capa-
bilities

This requirement was acheived by designing the monitoring sys-
tem, so that no monitoring client needs to be installed on the
nodes under monitoring. The approach collects network informa-
tion from passive network traffic and using active probing which
only uses ICMP protocol to send probe packets to the nodes being
monitored. The firewall must be configured to allow ICMP traffic.

TL11: Scalability The Implementation consists of two parts: A containerized DataVi-
sualizer that uses Docker-compose and runs on virtualized hard-
ware. This enables the system to be easily scalable by definition.
The DataAggregator, which collects and processes network met-
rics, runs directly on the host OS and requires physical hardware
resources. The DataAggregator is not designed with scaling in
focus. However, it can be scaled by running multiple nodes, each
exposing metrics to the DataVisualizer individually via separate
DataExporter.
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Table 6.4: Top-level requirements

Requirement Approach

TL12: Automation As the implementation does not focus on automation, it is out-
side the scope of this thesis. However, the open-source tools
Prometheus and Grafana do allow connections to various known
and customized services, so the work can be modified to meet this
requirement.

TL13: User manage-
ment

The implementation provides two platforms for managing the sys-
tem. The first is the Prometheus dashboard, which allows users to
manage data sources and databases. The dashboard also provides
basic data visualization. Secondly, Grafana dashboard allows users
to create and customize their own charts, providing advanced, flex-
ible visualization options.

TL14: Visibility This requirements is met with the implementation of the DataVi-
sualizer module.

TL15: Reporting Grafana dashboard allows users to create their own reports and
logs via plugin scripts. The reports are synchronized to Grafana
via the database connection.

TL16: Alerting Using Grafana dashboards, the user can specify queries and ex-
pressions to generate alerts for each monitoring window.

6.5.1.2 System-level requirements

System-level requirements are the specifications that are related to the environment
the monitoring system is running in. The table 6.5 below provides an evalaution of
system-level requirements listed in section 3.1.

Table 6.5: System-level requirements

Requirement Approach

SL4: Low resources
consumption

Utilizing eBPF in the network traffic collection process results in
reduction in resources consumption. First of all, eBPF programs
only run when triggered by a predefined event. Furthermore, eBPF
programs run at a very low level in the kernel, traversing less
through the OS layers and requiring fewer context switches. This
study [p35] contributes to this idea.

SL5: Interoperability Interoperability is achieved by using standard communication
between the nodes and the monitoring system by sending ICMP
probe packets. This allows different network nodes to exchange
information without further effort. Moreover, the network metrics
are exposed via API endpoints at the DataExporter. This allows
any service to communicate with the system via unified HTTP
calls.
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Table 6.5: System-level requirements

Requirement Approach

SL6: Security Security is enhanced in the system by dropping malicious packets
at the early stages of reception through XDP filtering. The use of
open-source tools to create software in general exposes the system
to threats without constant patch updates. In summary, the focus
of this thesis is not security, so this is outside the scope of this
thesis.

6.5.1.3 Feature-level requirements

Features are specific functions or features that a software system needs to provide as
part of its overall functionality. They may be essential to the system’s operation, or they
may be desirable additions that improve the user experience or extend the system’s
capabilities. The feature-level requirements listed in section 3.3 are specific to the
monitoring system that is the subject of this requirements document.

Table 6.6: Feature-level requirements

Requirement Approach

FL3: Dashboard The DataVisualizer provides two main dashboards: the
Prometheus monitoring server for managing the monitoring sys-
tem, and the data visualization component for designing charts
and setting alerts etc.

FL4: Data persis-
tency

The DataVisualizer module holds a database running in a container
and attached to external volume on the hard drive. The requirement
is therefore satisfied.

6.6 Conclusion
In this chapter, relevant applied software testing methods are discussed. For performance
evaluation, two setups are defined, and the performance of the implementation is evalu-
ated for different tasks. The tasks were selected to represent different types of workloads.
Among the performance aspects taken into consideration were latency, stability, and

hardware utilization. The results indicated significant performance improvements with
the use of eBPF and XDP. However, the evaluation results varied depending on the
testbed setup. In addition, the scalability of the proposed approach was examined. Fol-
lowing the performance evaluation, a comparative analysis is performed by analyzing
the three layers of requirements described in chapter 3. The requirements evaluation

determined which requirements have been met and which require further development.
The next chapter presents a summary and conclusion of the thesis, followed by an

outlook.
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7.1 Overview

This thesis presents a benchmarking and monitoring system for real-time networks.

The work addresses the challenges of monitoring real-time networks, especially in
industrial applications. The system aims to enable real-time monitoring by providing
more stable monitoring, and reduce the amount of resources consumed in the process of
data collection by using eBPF and XDP.

The thesis begins with an introduction to the topic and reviews the state-of-the-art

in relation to the concerned research field, followed by an analysis of the requirements.
In the requirements analysis process, a 3-layer model with requirements from the
highest abstraction to the lowest abstraction is derived. Each layer contains a table of
elements, each representing a functional or non-functional requirement. According to
the assessment of requirements, this work presents the general approach following Lee’s

work [p7], and the concept expressed as a software architecture. The implementation
of the monitoring system is based on the concept and approach to meet the defined
requirements.

In addition, the integration of eBPF and XDP in the system is further explained and
visualized. This implementation also includes a microservice-oriented data visualization

module containerized with Docker. An evaluation of the performance of the implemen-
tation is conducted in a testbed environment. The implementation is also evaluated
against the defined requirements through a comprehensive comparative analysis. Finally,
a comparison of the adopted approach with alternatives is also presented.
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7.2 Conclusions and Impact

This work presented a practical software-based network monitoring system that focuses
on some challenges in monitoring real-time networks by significantly reducing resources
consumption and capturing network events at earlier stages. The system has been
implemented and evaluated on a testbed network. The results show that the proposed
system is able to process more network activities than conventional solutions.

The concept of the monitoring system aims at service-oriented and containerized
architecture that runs on virtual hardware, beside the data collection part that runs on
the main hardware. An interface enables human-machine interactions and gives the user
control over the system.

Although eBPF provides instantaneous responses from the OS, speed is not its

primary feature. The idea of skipping ingress packets at the NIC driver and egress
packets at the socket-level with the help of eBPF and XDP results in huge performance
improvements since unnecessary computations or parts of the kernel stack are avoided.
Additionally, eBPF programs detect events earlier and more accurately than traditional
approaches, resulting in more accurate information. While eBPF offers better perfor-

mance overall, it can be difficult to take a proof-of-concept eBPF program and extend it
to a more complex program. BCC is one way of making writing eBPF programs easier,
but there is still a long way to go before making writing more comprehensive eBPF
programs easy.

7.3 Outlook

The monitoring system offers a proof-of-concept to demonstrate some characteristics of
targeting low-level operating system operations related to network traffic collection. The
presented approach can be enhanced by extending its functionalities and the implemen-
tation of more advanced eBPF applications for network monitoring. For example, using
TCP over ICMP for sending probe packets is more recommended to gain a more granular

image of the network state. TCP is a more common use case and thus tends to be more
representative of real-world applications. The current prototype was also not evaluated
in the case of long-term data collection, where a large number of measurements are
taken over an extended period of time. This is an important limitation, as fluctuations
in the network environment can occur and affect the accuracy of the collected data.

Finally, the approach could be further optimized by incorporating more sophisticated
data-collection and analysis algorithms, which would enable more in-depth insights into
the network state.

The eBPF monitoring system can be further improved by adding other features, such
as:

• correlating network activities with process information (e.g., PIDs) on the moni-
tored system.

• detecting malicious activities or suspicious patterns over the network.
• providing more detailed information (e.g., packet payloads) about the monitored

traffic.
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In this section a code review over the implementation, the testbed setup and evaula-
tion is provided. The final source code is found here [m1].

8.1 eBPF program examples
This section showcases a few eBPF programs from the BCC collection that have been
modified to work with the monitoring system. This displays how any network-related
eBPF application can be enhanced to interact with other services and maintain a robust
real-time connection.

8.1.1 BCC programs as modules
This example demostrates an example eBPF program from the BCC collection modified
to be imported as a module to the prometheus_exporter. This helps exporting metrics
from various eBPF programs for later scraping. The listing 8.1 shows a pseudo-code for
the general structure of an eBPF program written using BCC libraries in python.

Listing 8.1: eBPF program as module
1 #!/usr/bin/python
2 # Copyright 2016 Netflix, Inc.
3 # Licensed under the Apache License, Version 2.0 (the "License")
4 #
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5 # 28−Jan−2016 Brendan Gregg Created this.
6 # 30−Mar−2016 Allan McAleavy updated for BPF_PERF_OUTPUT
7 # 23−Dec−2021 Amro Hendawi Added prometheus metrics exporter
8 from __future__ import print_function
9 from bcc import BPF

10 from prometheus_client import Gauge
11 latencyGauge = Gauge(’metric_name’, ’metric description’, [’attribute1’, ’attribute2’] )
12 # load BPF program
13 bpf_text = """
14 #include <uapi/linux/ptrace.h>
15 #include <linux/sched.h>
16 struct val_t {
17 .
18 .
19 };
20 BPF_HASH(start, u32, struct val_t);
21 BPF_PERF_OUTPUT(events);
22 int foo(struct pt_regs *ctx) {}
23 int bar(struct pt_regs *ctx) {}
24 """
25 b = BPF(text=bpf_text)
26 b.attach_uprobe(name="c", sym="kernel_function1", fn_name="do_entry")
27 b.attach_uprobe(name="c", sym="kernel_function2", fn_name="do_entry")
28 b.attach_uretprobe(name="c", sym="kernel_function3", fn_name="do_return")
29 # header
30 def print_event(data):
31 event = b["events"].event(data)
32 latencyGauge.labels( event.host.decode(’utf−8’, ’replace’)).set(float(event.delta) / 1000000)
33 def run_ebpf_program():
34 b["events"].open_perf_buffer(print_event)
35 while 1:
36 try:
37 b.perf_buffer_poll()
38 except KeyboardInterrupt:
39 exit()

One of the eBPF programs from the BCC collection used in this work is called tcprtt.
This program measures the round-trip time (RTT) of TCP traffic to assess the network
quality and outputs results as ready for histogram plot. It also helps us distinguish
whether the network latency issue originates from the user or from the physical network.

Figure 8.1: tcprtt example output

Connection latency (tcpconnlat) measures the time taken to establish a connection
through TCP passively. It typically involves the TCP/IP processing at the kernel level
and the network round trip time, not application runtime. tcpconnlat measures the time
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between a connection and its response packet, in other words, the time from SYN sent
to the response packet.

Figure 8.2: tcpconnlat example output

Tcplife summarizes TCP sessions that have opened and closed while tracing. It helps
characterize workloads and identify what connections are taking place and what data
is being transferred. Below is an example of the output when using wget to download
Google’s homepage.

Figure 8.3: tcplife example output

8.2 Docker Implementation
The Docker Compose file presented in listing 8.2 represents the DataVisualizer module
in figure 5.1. It consists of prometheus server, grafana dashboard, a database integrated
in prometheus service and the performance metrics exporter node_exporter.

Listing 8.2: Specification 1
1 version: "3.7"
2 services:
3 prometheus:
4 image: prom/prometheus:latest
5 volumes:
6 − ./prometheus/prometheus.yml:/etc/prometheus/prometheus.yml
7 ports:
8 − 9090:9090
9 extra_hosts:

10 − "host.docker.internal:host−gateway"
11 grafana:
12 image: grafana/grafana:latest
13 volumes:
14 − ./grafana/grafana.ini:/etc/grafana/grafana.ini
15 − ./grafana/datasource.yml:/etc/grafana/provisioning/datasources/datasource.yml
16 ports:
17 − 3000:3000
18 links:
19 − prometheus
20 node−exporter:
21 image: prom/node−exporter:latest
22 container_name: monitoring_node_exporter
23 restart: unless−stopped
24 ports:
25 − 9100:9100
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8.3 Testbed initialization script

8.3.1 Testbed over Docker
The testbed environment prepared for the evalaution of the concept is created based on
the testbed architecture in figure 6.2 using the shell script in listing 8.4. This script creates
a software network bridge which with high Maximum transmission unit (MTU) rate for
testing the concept under high throughput pressure will allows containers connected to
the same bridge network to communicate. The script also creates 5 docker containers
running basic Linux alpine image representing test network nodes. The virtual network
configurations are also defined and the necessary protocols for the evaluation are enabled.
Creating a testbed using docker containers eliminates unrelated outside factors such as
network latency or router bottleneck.

Listing 8.3: Testbed initialization as Docker containers
1 #!/bin/bash
2 num_nodes=5
3 network_name=setup2
4 # cleanup from past runs
5 for instance in $(seq 1 $num_nodes)
6 do
7 docker stop node−$instance
8 done
9 res=$(docker network ls | grep $network_name)

10 if ! [ −z "$res" ];
11 then
12 docker network rm $network_name
13 fi
14 #####################
15 # create docker network with mtu higher than 1500
16 docker network create −−driver=bridge \
17 −o "com.docker.network.driver.mtu"="3000" \
18 −o "com.docker.network.bridge.host_binding_ipv4"="0.0.0.0" \
19 −o "com.docker.network.bridge.enable_icc"="true" $network_name
20 for instance in $(seq 1 $num_nodes)
21 do
22 docker run −it −d −−rm −−name node−$instance −−network $network_name alpine
23 done
24 for instance in $(seq 1 $num_nodes)
25 do
26 echo assigned IP address for node−$instance:
27 docker exec node−$instance ip addr show eth0
28 echo ""
29 done

The docker instances share the same docker network bridge as in the listing below
8.5. This can be reproduced by executing the following line.

Listing 8.4: Testbed initialization as Docker containers
1 docker network inspect bridge

Listing 8.5: docker-network-bridge
1 [
2 {
3 "Name": "setup2",
4 "Id": "9bde9251520aa0f16d4fcacb8e1355437f818a7460f3fa87d22034a00badfdcc",
5 "Created": "2022−02−11T15:52:57.745217578+01:00",
6 "Scope": "local",
7 "Driver": "bridge",
8 "EnableIPv6": false,
9 "IPAM": {

10 "Driver": "default",
11 "Options": {},
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12 "Config": [
13 {
14 "Subnet": "172.31.0.0/16",
15 "Gateway": "172.31.0.1"
16 }
17 ]
18 },
19 "Internal": false,
20 "Attachable": false,
21 "Ingress": false,
22 "ConfigFrom": {
23 "Network": ""
24 },
25 "ConfigOnly": false,
26 "Containers": {
27 "2feae3d40780717f5419b8b17c872df077ce53a28c54d834871a8e2f1950754c": {
28 "Name": "node−2",
29 "EndpointID": "82d06d6542cf7aca79594ee8922c84dd22bf6bdad16748cb12322038a22dabb5",
30 "MacAddress": "02:42:ac:1f:00:03",
31 "IPv4Address": "172.31.0.3/16",
32 "IPv6Address": ""
33 },
34 "747ac98846f25b50d76b05096d14a522ff3f65170adb152c31f4c4b45218756a": {
35 "Name": "node−1",
36 "EndpointID": "ef6591d26b5be9a066303477b93834c9622103af32333da00a8120b85eb6851c",
37 "MacAddress": "02:42:ac:1f:00:02",
38 "IPv4Address": "172.31.0.2/16",
39 "IPv6Address": ""
40 },
41 "9a66c82dc179938d1f4565b0e867668dba0d751d069eabcd820bb6a108fe500d": {
42 "Name": "node−3",
43 "EndpointID": "fe1a04c7e5582a219f8b65eaa3d8811d54c1470ec2e4e23ef9e3534762bb9e2b",
44 "MacAddress": "02:42:ac:1f:00:04",
45 "IPv4Address": "172.31.0.4/16",
46 "IPv6Address": ""
47 }
48 },
49 "Options": {
50 "com.docker.network.bridge.enable_icc": "true",
51 "com.docker.network.driver.mtu": "3000"
52 },
53 "Labels": {}
54 }
55 ]

8.3.2 Testbed over GCP
The testbed environment prepared for the evalaution of the concept was created using
the following shell script. It creates three n2-standard-2 VM instances on google cloud
service. The virtual network and firewall rules are also defined and the necessary proto-
cols for the evaluation are enabled. Creating a testbed over GCP differs from docker
testbed in the way that the nodes run over separate machines.

Listing 8.6: Specification 1
1 #!/bin/sh
2 # initial variables
3 USER_NAME=’testbed’
4 TAG=’testbed_network’
5 INSTANCE_NAME=’testbed−instance’
6 # create ssh key pair and add it to GCP account
7 echo −e ’y\n’ | ssh−keygen −f id_rsa −C $USER_NAME
8 echo −n $USER_NAME":$(cat id_rsa.pub)" > $METADATA_FILE
9 gcloud compute project−info add−metadata −−metadata−from−file ssh−keys=$METADATA_FILE

10 # create the firewall rule for ssh and icmp
11 gcloud compute firewall−rules create allow−ssh−icmp−rule −−network default −−action allow −−direction ingress,

egress −−rules tcp,icmp −−source−ranges=0.0.0.0/0 −−target−tags $TAG
12 # create 3 instances in the same network
13 for num in $(seq 1 3);
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14 do
15 gcloud compute instances create $INSTANCE_NAME$num −−zone=europe−west3−c −−machine−type n2−

standard−2 −−image−project ubuntu−os−cloud −−image−family ubuntu−1804−lts −−tags $TAG
16 # resize disk space of the created instance
17 echo ’y’ | gcloud compute disks resize $INSTANCE_NAME$num −−size=100G −−zone=europe−west3−c
18 done
19 echo "success!"

8.4 Performance tools bpftool
bpftool are a set of tools that allow for inspection and simple manipulation of eBPF
programs and maps including xdp programs. There are currently two tools in this suite:

• eBPF tool: This tool allows you to inspect and modify eBPF programs and maps.
To use this tool, you must first install the eBPF kernel module.

• map tool: This tool allows you to inspect and modify maps.

Both of these tools are command-line tools. To enable the full functionality of
bpftool it needs to be installed from the source code as in the listing 8.7 below.

Listing 8.7: bpftool
1 # install dependencies
2 sudo apt install pkg−config m4 libelf−dev libpcap−dev gcc−multilib python−docutils python−docutils
3 # update packages
4 sudo apt update && sudo apt upgrade
5 # clone libbpf repository
6 git clone https://github.com/libbpf/libbpf.git
7 # cd into directory
8 cd libbpf/src
9 # build and install libbpf

10 make
11 # download linux kernel source code
12 wget https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/snapshot/linux−5.15.tar.gz
13 # unpack and cd into directory
14 tar xvzf linux−5.15.tar.gz linux−5.15 && cd linux−5.15
15 # build and install bpftools
16 cd tools/bpf/bpftool; make; sudo make install; make doc; sudo make doc−install

8.5 Writing XDP programs
There are a few things to consider when writing an XDP program. XDP programs are
run in kernel space, so they must be compliant with the kernel’s programming model.
Therefore, they must be lightweight and efficient, and they must not modify any data
structures that are not explicitly shared with the kernel. In addition, XDP programs
are attached to network interfaces, so they must be designed to work with the network
interface’s hardware. XDP programs, for instance, cannot assume they can read or write
to a specific memory location on the network interface. Lastly, XDP programs can only
be used to process packets received by a network interface. They cannot process packets
sent by the network interface. In the following is a pseudo-XDP program designed to
drop packets specified by the developer.

Listing 8.8: xdp-example
1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3 #include <arpa/inet.h>
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4 SEC("xdp_drop")
5 int xdp_drop_prog(struct xdp_md *ctx)
6 {
7 void *data_end = (void *)(long)ctx−>data_end;
8 void *data = (void *)(long)ctx−>data;
9 struct ethhdr *eth = data;

10 .
11 .
12 if(packet_eligible_for_dropping())
13 return XDP_DROP;
14 return XDP_PASS;
15 }

In order to build and load XDP programs, a few dependencies must be installed. The
script below 8.9 illustrates how XDP programs can be executed.

Listing 8.9: xdp-setup
1 # clone xdp−tools repository
2 git clone https://github.com/xdp−project/xdp−tools.git
3 # cd into directory
4 cd xdp−tools
5 # build and install
6 ./configure && make
7 # compile the xdp program
8 clang −O2 −g −Wall −target bpf −c xdp_drop.c −o xdp_drop.o
9 # install xdp program to eth0

10 sudo ip link set eth0 xdpgeneric obj xdp_drop.o sec xdp_drop
11 # load xdp program using xdp−loader
12 sudo ./xdp−loader/xdp−loader load −m skb −s xdp_drop eth0 xdp_drop.o

8.6 FlameGraph preparation
Flamegraphs are a visualization tool used to depict the call stack of a running program.
They are created by stacking vertically the functions called during a program’s execution,
with the function at the top of the stack being the one that was called first. The width
of each function’s column corresponds to how long that function was running for. The
height of each function’s column is proportional to the number of times that function
was called. Flamegraphs can be used to quickly identify which functions are taking up
the most time in a program. This information can be used to help optimize a program’s
code.

The table below shows how to use flamegraphs

Listing 8.10: flamegraph
1 # make sure you are in root user
2 sudo bash
3 # download Flamegraph
4 git clone https://github.com/brendangregg/FlameGraph
5 # download bcc open−source tools
6 git clone https://github.com/iovisor/bcc.git
7 # 1− call the eBPF−based profiler at a frequency of 99 hertz for 60 seconds
8 # 2− pipe the output to flamegraph to convert to svg flamegraph
9 sudo ./bcc/tools/profile.py −dF 99 −f 60 | ./FlameGraph/flamegraph.pl > perf.svg



B I B L I O G R A P H Y

References to Scientific Publications
[p1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial commu-

nication: Automation networks in the era of the internet of things and industry
4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27, 2017.
D O I: 10.1109/MIE.2017.2649104 (cit. on p. 1).

[p2] J. C. Knight, “Safety critical systems: Challenges and directions,” in Proceedings
of the 24th International Conference on Software Engineering. ICSE 2002, 2002,
pp. 547–550 (cit. on p. 1).

[p3] R. Zhohov, D. Minovski, P. Johansson, and K. Andersson, “Real-time perfor-
mance evaluation of lte for iiot,” in 2018 IEEE 43rd Conference on Local
Computer Networks (LCN), 2018, pp. 623–631. D O I: 10.1109/LCN.2018.
8638081 (cit. on p. 2).

[p4] I. Palúchová, “Optimization of network monitoring” (cit. on p. 2).

[p5] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle, “Per-
formance implications of packet filtering with linux ebpf,” in 2018 30th In-
ternational Teletraffic Congress (ITC 30), vol. 01, 2018, pp. 209–217. D O I:
10.1109/ITC30.2018.00039 (cit. on pp. 2, 3, 10).

[p6] A. Kind, X. Dimitropoulos, S. Denazis, and B. Claise, “Advanced network
monitoring brings life to the awareness plane,” IEEE Communications Magazine,
vol. 46, no. 10, pp. 140–146, 2008. D O I: 10.1109/MCOM.2008.4644132 (cit.
on p. 2).

[p7] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and fu-
ture,” Computer Networks, vol. 65, pp. 84–98, 2014, I S S N: 1389-1286. D O I:
https://doi.org/10.1016/j.comnet.2014.03.007. [Online]. Avail-
able: https : / / www . sciencedirect . com / science / article / pii /
S138912861400111X (cit. on pp. 2, 8, 9, 20, 24, 27, 43).

[p8] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal, “Creating com-
plex network services with ebpf: Experience and lessons learned,” in 2018 IEEE
19th International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1–8. D O I: 10.1109/HPSR.2018.8850758 (cit. on pp. 3,
11).

[p9] K. Hoyme and K. Driscoll, “Safebus,” in [1992] Proceedings IEEE/AIAA 11th
Digital Avionics Systems Conference, 1992, pp. 68–73 (cit. on p. 6).

https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1109/LCN.2018.8638081
https://doi.org/10.1109/LCN.2018.8638081
https://doi.org/10.1109/ITC30.2018.00039
https://doi.org/10.1109/MCOM.2008.4644132
https://doi.org/https://doi.org/10.1016/j.comnet.2014.03.007
https://www.sciencedirect.com/science/article/pii/S138912861400111X
https://www.sciencedirect.com/science/article/pii/S138912861400111X
https://doi.org/10.1109/HPSR.2018.8850758


B
ib

lio
gr

ap
hyBibliography IX

[p10] M. Postolache, “Time-triggered canopen implementation for networked embed-
ded systems,” in 2016 20th International Conference on System Theory, Control
and Computing (ICSTCC), Oct. 2016, pp. 168–173. D O I: 10.1109/ICSTCC.
2016.7790660 (cit. on p. 6).

[p11] M. Abuteir and R. Obermaisser, “Simulation environment for time-triggered
ethernet,” in 2013 11th IEEE International Conference on Industrial Informatics
(INDIN), 2013, pp. 642–648 (cit. on p. 6).

[p12] M. H. Farzaneh and A. Knoll, “Time-sensitive networking (tsn): An experi-
mental setup,” in 2017 IEEE Vehicular Networking Conference (VNC), 2017,
pp. 23–26 (cit. on p. 6).

[p13] T. Bu, Y. Yang, X. Yang, W. Quan, and Z. Sun, “Tsn-insight: An efficient network
monitor for tsn networks,” Apnet, 2019 (cit. on p. 6).

[p14] A. H. Celdrán, M. G. Pérez, F. J. García Clemente, and G. M. Pérez, “Automatic
monitoring management for 5g mobile networks,” Procedia Computer Science,
vol. 110, pp. 328–335, 2017, 14th International Conference on Mobile Systems
and Pervasive Computing (MobiSPC 2017) / 12th International Conference
on Future Networks and Communications (FNC 2017) / Affiliated Workshops,
I S S N: 1877-0509. D O I: https://doi.org/10.1016/j.procs.2017.06.
102. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050917312802 (cit. on p. 7).

[p15] T. A. N. do Amaral, R. V. Rosa, D. F. C. Moura, and C. E. Rothenberg, “An
in-kernel solution based on xdp for 5g upf: Design, prototype and performance
evaluation,” in 2021 17th International Conference on Network and Service
Management (CNSM), 2021, pp. 146–152. D O I: 10.23919/CNSM52442.2021.
9615553 (cit. on p. 7).

[p16] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A low cost
network monitoring framework for software defined networks,” in 2014 IEEE
Network Operations and Management Symposium (NOMS), 2014, pp. 1–9. D O I:
10.1109/NOMS.2014.6838227 (cit. on pp. 7, 13).

[p17] J. Jiang, Y. Li, S. H. Hong, M. Yu, A. Xu, and M. Wei, “A simulation model
for time-sensitive networking (tsn) with experimental validation,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), 2019, pp. 153–160. D O I: 10.1109/ETFA.2019.8869206 (cit. on
p. 7).

[p18] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Ad-
vanced study of sdn/openflow controllers,” in Proceedings of the 9th central
& eastern european software engineering conference in russia, 2013, pp. 1–6
(cit. on p. 7).

[p19] Open-source, “Oflops/cbench at master · andi-bigswitch/oflops,” Available on-
line (cit. on p. 7).

[p20] Open-source, “Arccn/hcprobe: Framework for testing openflow controllers,”
Available online (cit. on p. 8).

[p21] B. Siniarski, C. Olariu, P. Perry, T. Parsons, and J. Murphy, “Real-time monitor-
ing of sdn networks using non-invasive cloud-based logging platforms,” in 2016
IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2016, pp. 1–6. D O I: 10.1109/PIMRC.2016.
7794973 (cit. on p. 8).

https://doi.org/10.1109/ICSTCC.2016.7790660
https://doi.org/10.1109/ICSTCC.2016.7790660
https://doi.org/https://doi.org/10.1016/j.procs.2017.06.102
https://doi.org/https://doi.org/10.1016/j.procs.2017.06.102
https://www.sciencedirect.com/science/article/pii/S1877050917312802
https://www.sciencedirect.com/science/article/pii/S1877050917312802
https://doi.org/10.23919/CNSM52442.2021.9615553
https://doi.org/10.23919/CNSM52442.2021.9615553
https://doi.org/10.1109/NOMS.2014.6838227
https://doi.org/10.1109/ETFA.2019.8869206
https://doi.org/10.1109/PIMRC.2016.7794973
https://doi.org/10.1109/PIMRC.2016.7794973


X Bibliography

[p22] M. Felser and T. Sauter, “The fieldbus war: History or short break between bat-
tles?” In 4th IEEE International Workshop on Factory Communication Systems,
2002, pp. 73–80. D O I: 10.1109/WFCS.2002.1159702 (cit. on p. 8).

[p23] R. Piggin, “Fieldbus flexes for safety networks,” inTech Magazine isa.org, 2005
(cit. on p. 8).

[p24] M. Karsten and J. Schmitt, “Packet marking for integrated load control,” in 2005
9th IFIP/IEEE International Symposium on Integrated Network Management,
2005. IM 2005., 2005, pp. 499–512. D O I: 10.1109/INM.2005.1440821
(cit. on p. 9).

[p25] H. Sun, “An integrated network performance monitor system,” in 2010 Third
International Symposium on Intelligent Information Technology and Security
Informatics, 2010, pp. 88–91. D O I: 10.1109/IITSI.2010.60 (cit. on p. 9).

[p26] E. J. S. E. R. Enns. Ed. M. Bjorklund and A. B. Ed., “Hjp: Doc: Rfc 6241:
Network configuration protocol (netconf),” (Accessed on 06/04/2021), Jun.
2011 (cit. on p. 9).

[p27] M. B. Ed., “Hjp: Doc: Rfc 6020: Yang - a data modeling language for the network
configuration protocol (netconf),” (Accessed on 06/04/2021), Oct. 2010 (cit. on
p. 9).

[p28] D. Plonka, “Flowscan: A network traffic flow reporting and visualization tool.,”
in LISA, 2000, pp. 305–317 (cit. on p. 9).

[p29] M. A. Vieira, M. S. Castanho, R. D. Pacıfico, E. R. Santos, E. P. C. Júnior,
and L. F. Vieira, “Fast packet processing with ebpf and xdp: Concepts, code,
challenges, and applications,” ACM Computing Surveys (CSUR), vol. 53, no. 1,
pp. 1–36, 2020 (cit. on pp. 13, 15).

[p30] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time network anomaly
detection system using machine learning,” in 2015 11th International Con-
ference on the Design of Reliable Communication Networks (DRCN), 2015,
pp. 267–270. D O I: 10.1109/DRCN.2015.7149025 (cit. on p. 13).

[p31] R. Pietro and F. Lombardi, “Virtualization technologies and cloud security:
Advantages, issues, and perspectives,” Jul. 2018 (cit. on p. 14).

[p32] G. Fournier, “Process level network security monitoring & enforcement with
ebpf,” (cit. on p. 14).

[p33] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, “Accelerating linux security
with ebpf iptables,” in Proceedings of the ACM SIGCOMM 2018 Conference
on Posters and Demos, 2018, pp. 108–110 (cit. on pp. 15, 22).

[p34] M. Chakraborty and A. P. Kundan, Prometheus. Berkeley, CA: Apress, 2021,
pp. 99–131, I S B N: 978-1-4842-6888-9. D O I: 10.1007/978-1-4842-6888-
9_4. [Online]. Available: https://doi.org/10.1007/978-1-4842-6888-
9_4 (cit. on p. 28).

[p35] M. Abranches, O. Michel, E. Keller, and S. Schmid, “Efficient network monitor-
ing applications in the kernel with ebpf and xdp,” in 2021 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN),
2021, pp. 28–34. D O I: 10.1109/NFV-SDN53031.2021.9665095 (cit. on
p. 41).

https://doi.org/10.1109/WFCS.2002.1159702
https://doi.org/10.1109/INM.2005.1440821
https://doi.org/10.1109/IITSI.2010.60
https://doi.org/10.1109/DRCN.2015.7149025
https://doi.org/10.1007/978-1-4842-6888-9_4
https://doi.org/10.1007/978-1-4842-6888-9_4
https://doi.org/10.1007/978-1-4842-6888-9_4
https://doi.org/10.1007/978-1-4842-6888-9_4
https://doi.org/10.1109/NFV-SDN53031.2021.9665095


B
ib

lio
gr

ap
hyBibliography XI

Technical References
[t1] B. Claise and S. Bryant, “Specification of the ip flow information export (ipfix)

protocol for the exchange of ip traffic flow information,” RFC 5101, January,
Tech. Rep., 2008 (cit. on p. 9).

[t2] brendan Gregg, “Linux ebpf tracing tools,” Tech. Rep., 2017 (cit. on p. 12).

[t3] I. Visor, “Xdp - io visor project,” Tech. Rep. (cit. on p. 13).

[t4] “Client libraries | prometheus,” Tech. Rep. (cit. on p. 28).

Miscellaneous References
[m1] A. Hendawi, “Amro.hendawi / rt monitoring system,” in GitLab, 2022. [On-

line]. Available: https : / / git . tu - berlin . de / amro . hendawi / rt _
monitoring_system.git (cit. on p. I).

https://git.tu-berlin.de/amro.hendawi/rt_monitoring_system.git
https://git.tu-berlin.de/amro.hendawi/rt_monitoring_system.git




I N D E X

Symbols

5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i, 1

B

BCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
bpftool . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VI

C

Concept and Approach . . . . . . . . . . . . . . 20
CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i, 1

D

docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

E

eBPFi, 2 – 5, 12, 15 f, 20, 22, 24 – 27, 29,
32, 34, 40 f, 43

eBPF-examples . . . . . . . . . . . . . . . . . . . . . . I
Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . .33

F

flamegraph . . . . . . . . . . . . . . . . . . . . . . . . VII

G

GCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I

I4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i f, 1 f
Implementation . . . . . . . . . . . . . . . . . . . . . 25
IoT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i, 1

L

LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

N

NFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

O

OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 22

R

Related Area. . . . . . . . . . . . . . . . . . . . . . . . .6
Related Area 2 . . . . . . . . . . . . . . . . . . . . . . . 7
Related Area 3 . . . . . . . . . . . . . . . . . . . . . . . 8
Related Area 4 . . . . . . . . . . . . . . . . . . . . . . . 7
Requirements . . . . . . . . . . . . . . . . . . . . . . . 17
RT . . . . . . . . . . . . . . . . . . . 4 f, 9 f, 14, 16, 24

S

SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 f
SotA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 14

T

testbed-spinup . . . . . . . . . . . . . . . . . . . . . . IV
TSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i f, 6

V

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Verification . . . . . . . . . . . . . . . . . . . . . . . . . 33

X

XDP . . . 3 ff, 13, 16, 20, 22 ff, 32, 34, 42 f
xdp-programs . . . . . . . . . . . . . . . . . . . . . . VI


	Title
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem statement
	1.3 Assumptions and Scope
	1.4 Objectives and Contributions
	1.5 Methodology and Outline

	2 State of the art
	2.1 Modern network technologies
	2.1.1 TSN
	2.1.2 5G
	2.1.3 SDN
	2.1.4 Fieldbus

	2.2 Network monitoring
	2.2.1 Collection layer
	2.2.2 Representation layer
	2.2.3 Report layer
	2.2.4 Analysis layer
	2.2.5 Presentation layer

	2.3 Packet filtering in Linux machines
	2.3.1 Hardware Level
	2.3.2 Network Level
	2.3.3 System Level
	2.3.4 Application Level

	2.4 The Berkeley packet filter eBPF
	2.5 The eXpress data path XDP
	2.6 Conclusion

	3 Requirement Analysis
	3.1 Top-level requirements
	3.2 System-level requirements
	3.3 Feature-level requirements

	4 Concept and Approach
	4.0.1 Introduction
	4.1 General discussion
	4.2 Software Architecture
	4.3 Conclusion

	5 Implementation
	5.1 Introduction
	5.2 Software Design
	5.2.1 Real-time data collection
	5.2.2 Active probing
	5.2.3 Real-time data exporter
	5.2.4 Visualization

	5.3 Conclusion

	6 Evaluation
	6.1 Introduction
	6.2 Experimental validation
	6.2.1 Setup 1
	6.2.2 Setup 2

	6.3 Performance evaluation
	6.3.1 Evaluation on single node
	6.3.2 Stress-test evalaution

	6.4 Hardware utilization evaluation
	6.5 Comparative Analysis
	6.5.1 Requirement Evaluation

	6.6 Conclusion

	7 Summary and Further Work
	7.1 Overview
	7.2 Conclusions and Impact
	7.3 Outlook

	8 Specifications
	8.1 eBPF program examples
	8.1.1 BCC programs as modules

	8.2 Docker Implementation
	8.3 Testbed initialization script
	8.3.1 Testbed over Docker
	8.3.2 Testbed over GCP

	8.4 Performance tools bpftool
	8.5 Writing XDP programs
	8.6 FlameGraph preparation

	Bibliography
	Index

